FITC 標記 FITC-labelled
請左右移動表格位置查看更完整內容
英文名稱 | 產品名稱 | 描述 | 應用 |
---|---|---|---|
FITC 葡聚醣 | FITC-dextran | 未含帶電荷基團 (中性) | 用於組織、細胞、人類(非臨床)和動物研究。比如用於腸組織、腦和神經系統、腫瘤組織和腎組織的滲透性 (permeability)、血管滲透性 (vascular permeability) 和微循環 (microcirculation) 的研究。也可用於研究細胞通滲透性、吞噬作用 (phagocytosis) 和內吞作用 (endocytosis) 及藥物輸送 (drug delivery)。 |
FITC 聚蔗糖 * | FITC-polysucrose* | 未含帶電荷基團(中性) | 請參考 FITC – 葡聚醣。 |
FITC-CM – 葡聚醣 | FITC-Carboxymethyl-dextran | 含有負電荷基團(負電荷) | 用於研究負電荷對滲透性的影響(如 FITC – 葡聚醣)。羧基可以將一些感興趣的生物活性的分子(例如藥物、酶、診斷示踪劑)連接到葡聚醣 (dextran) 上,從而做進一步的滲透性和輸送的研究。 |
FITC-CM – 聚蔗糖 | FITC-Carboxymethyl-polysucrose* | 含有負電荷基團(負電荷) | 聚蔗糖呈現低滲透壓 (osmotic pressure) 和生物相容的特性,但在血液中不易降解。相比其他多醣,它的構象更類似於蛋白質的球狀結構。 |
FITC-DEAE – 葡聚醣 | FITC-Diethylaminoethyl-dextran | 含有正電荷基團(正電荷) | 請參考 FITC – 葡聚醣,但這些產品專門設計用於研究正電荷對膜 (membrane) 和組織滲透性 (tissue permeability) 的影響。DEAE 葡聚醣也常用作載體、佐劑 (adjuvants) 和體內 DNA 轉運體 (transporters)。 |
FITC-DEAE – 聚蔗糖 * | FITC-Diethylaminoethyl-polysucrose* | 含有正電荷基團(正電荷) | 類似於 FITC-CM – 聚蔗糖,但帶正電荷。 |
FITC – 硫酸葡聚醣 | FITC-dextran sulphate (DSS) | 帶螢光標記的葡聚醣硫酸鈉 | 在潰瘍性結腸炎 (UC, ulcerative colitis) 的研究中(參見硫酸葡聚醣鈉 (DSS)),作為追蹤硫酸葡聚醣鈉 (DSS) 體內命運和壽命的探針。 |
FITC – 菊糖 | FITC-inulin | 菊糖主要由果糖 (fructose) 和末端葡萄糖 (glucose) 組成 | 應用於腎小球過濾 (Glomerular filtration)。它是腎功能的關鍵指標。菊糖清除率測量 (Inulin clearance measurement)。相比較於其他估算肌酐清除率 (creainine clearance) 的手段,菊糖是用來測量腎功能 “黃金標準”。 |
FITC – 透明質酸 (馬鏈球菌) | Fluorescein Hyaluronic acid-Se | 來自馬鏈球菌 (Se=Streptococcus equi) 的透明質酸鈉鹽。它也被稱為透明質酸,是一種帶負電荷的,非硫酸化的糖氨基聚糖 (glcosamino-glycan),廣泛分佈於結締組織,上皮組織 (epithelial) 和神經組織中。 | 應用於眼科和化妝品研發應用。比如,可用來跟踪透明質酸 (hyaluronan) 在體內的命運。也用來研究透明質酸 – 受體表達的患病位點及藥物輸送,組織修復和再生等分子成像領域的應用。 透明質酸在組織水合作用(tissue hydration)、蛋白聚醣組織化(proteoglycan organizaiton)、粘附(adhesion),分化和細胞遷移(differentiation and cell migration)(體內或者體外)以及天然潤滑劑等許多生物進程中起作用。透明質酸不具有免疫原性(immunogenic)並且可生物降解的特性,對惡性腫瘤發生進展(malignant tumor progression)起了一定作用。 |
FITC – 海藻糖 | FITC-Trehalose | 海藻糖,也稱為 mycose 或 tremalose。它是由 2 個葡萄糖通過 α,α-1,1 – 糖苷鍵所形成 的天然的雙醣。 | 細胞生物學。檢測具有活性的分枝桿菌的探針(mycobacteria)。 |
ATTO488 – 葡聚醣 | ATTO488-labeled dextran | ATTO 488 是螢光素 (fluorescein) 的替代品,具有更強的光穩定性 (photostability) 和更亮的螢光 (fluorescence) 特性。 | 請參考 FITC – 葡聚醣。螢光基團 ATTO 488 非常適合單分子檢測 (single-moleculedetection) 應用和高分辨率顯微鏡。它也可用於流式細胞術 (flow cytometry)、螢光原位雜交 (Fluorescence in-situ hybridization, FISH) 等等。 |
FITC – 離胺酸 – 葡聚醣 | FITC-Lysine Dextran | FITC 離氨酸葡聚醣是具有天然氨基酸離氨酸作為取代基的葡聚醣聚合物鏈,有多種分子量可選擇。離氨酸葡聚醣可以在溫和條件下用染料或生物分子標記,並且當用甲醛或戊二醛處理時在細胞和組織中很好地固定。熒光素是一種明亮的染料,被廣泛使用,吸收光 493nm,發射光 520nm。 我們的高品質 FITC 離氨酸葡聚醣提供:
| |
FITC – 羥乙基澱粉 | FITC-hydroxyethyl starch | 羥乙基澱粉 (HES) 是非離子澱粉衍生物,其可具有不同的分子量。 HES 也稱為 HAES,Tetrastarch (Voluven™),pentastarch(Pentastan™) 和 Hetastarch (Hespan™)。 HES 已被發現用於治療血容量不足或突然失血。澱粉是天然豐富的(1-4β) – 葡萄糖聚合物,不溶於水。然而,當用羥乙基官能化時,澱粉鏈變成水溶性的並且已成為生命科學中的有用工具。熒光素 – HES (FHES) 用於研究以評估 HES 或生物系統(例如循環系統,腎臟等)的功能和行為,或用於測量血容量。 FITC-HES(異硫氰酸熒光素羥乙基澱粉)(FHES) 通過使 FITC 與 HES 反應來製備。該產品從試劑,溶劑和副產品中精心純化。它以橙色至深橙色粉末形式提供,易溶於水和 DMSO。濃度可高達每 10mL 水中含 1g,但溶液可能是粘稠的。平均分子量約為 165 kDa。通過凝膠滲透色譜法 (GPC) 測量實際分子量。 FITC 取代的程度在 0.001 和 0.01 之間。當在室溫下在黑暗中儲存在密封良好的容器中時它是穩定的。 FITC-HES 的吸收光為 493nm,發射光為 520nm。羥乙基含量平均為每葡萄糖單元 0.5 個羥乙基。 | |
FITC – 縮水甘油三甲基 – 葡聚醣 | FITC-O-Trimethylammonium-glycidyl-dextran | FITC-Q – 葡聚醣是黃色或橙色帶正電荷的多醣。 |
TRITC 標記 TRITC-labelled
請左右移動表格位置查看更完整內容
產品名稱 | 英文名稱 | 描述 | 應用 |
---|---|---|---|
TRITC – 葡聚醣 | Tetramethylrhodamine isothiocyana- te-dextran | 請參考 FITC – 葡聚醣的應用。 注意:相比 FITC,TRITC 發射的熒光強度更少依賴於 pH。在實驗的環境中,更長的發射波長可以使背景干擾達到最小化。 | |
TRITC – 透明質酸(馬鏈球菌) | Tetramethylrhodamine isothiocyana- te-Hyaluronic acid-Se | 請參考 FITC – 透明質酸 (馬鏈球菌) 的應用。 注意:相比 FITC,TRITC – 透明質酸對 pH 不敏感,發射波長更長,能降低實驗中的背景干擾。 | |
TRITC – 聚蔗糖 * | Tetramethylrhodamine isothiocyana-te-polysucrose* | 請參考 FITC – 聚蔗糖的應用。 注意:相比 FITC,TRITC – 聚蔗糖對 pH 不敏感,發射波長更長,能降低實驗中的背景干擾。 | |
TRITC-CM – 聚蔗糖 * | Tetramethylrhodamine isothiocyana-te-Carboxymethyl-polysucrose* | 請參考 FITC-CM – 聚蔗糖的應用。 注意:相比 FITC,TRITC – 聚蔗糖對 pH 不敏感,發射波長更長,能降低實驗中的背景干擾。 |
藍色標記
請左右移動表格位置查看更完整內容
產品名稱 | 英文名稱 | 描述 | 應用 |
---|---|---|---|
藍色葡聚醣 | Blue Dextran | 具有可見藍色的葡聚醣 | 用於色譜(作為空白體積標記)和用於過濾器的控制。也可用於細胞工作和滲透性研究,蛋白質和酶與藍色葡聚醣的結合。使用標準的 UV 和 RI 檢測器即可檢測。藍色葡聚醣已被用於阿滋海默症研究工作中。 |
無標記
請左右移動表格位置查看更完整內容
產品名稱 | 英文名稱 | 描述 | 應用 |
---|---|---|---|
硫酸葡聚醣鈉 (DSS) | Dextran Sulphate Sodium (DSS) | 結腸炎研究的黃金標準。炎症性腸病是一種病因不明的多因素疾病,由兩種主要亞型組成,即潰瘍性結腸炎 (ulcerative colitis) 和克羅恩病 (Crohn’s disease)。硫酸葡聚醣鈉 (DSS) 用於誘導動物的結腸炎的實驗。改變 DSS 的濃度或劑量的周期可以容易地誘發急性,慢性或複發性結腸炎。 | |
高硫硫酸葡聚醣 | High sulfated Dextran Sulfate | 高度硫酸化(按應用所需) | 可能與細胞,組織和器官以及具有輕微正電荷的可溶性生物介質(酶、蛋白質等)相互作用。用於藥物研究中感興趣的大分子的處理。結腸炎 (Colitis) 動物模型、化妝品、分子聚集 (molecular crowding)、細胞培養基添加劑 (cell media additive)、細胞保存 (cell preservation)、脂蛋白選擇性沉澱、探針雜交膜 (probe hybridization membrane) 固定化 DNA、釋放 DNA – 組蛋白複合物中的 DNA,以及抑制 RNA 與核醣體的結合。具有抗病毒特性。另參見 DSS。 |
低硫硫酸葡聚醣 | Low sulfated Dextran Sulfate | 低度硫酸化(按應用所需) | 如上所述使用,但較低的電荷密度可能會改變性能並降低毒性。結腸炎 / 動物模型、化妝品、分子擁擠 (molecular crowding)、細胞培養基添加劑 (cell media additive)、細胞保存 (cell preservation)、脂蛋白選擇性沉澱 (selective precipitation of lipoproteins)、探針雜交膜 (probe hydridization membrane) 固定化 DNA、從 DNA – 組蛋白複合物中釋放 DNA 以及抑制 RNA 與核醣體的結合。另參見 DSS。 |
苯基葡聚醣 | Phenyl Dextran | 親脂性,中性 | 用於塗覆微孔板,塑料和相關表面以賦予其更強的親水性。該性質在許多分析或診斷設備中已被證明是有價值的。 |
羧甲基 (CM) 葡聚醣 | Carboxymethyl Dextran | 含有負電荷基團(負電荷) | 羧甲基 (CM) 基團在無機和有機反應中可以與陽離子相互作用,這是製備綴合物 (conjugates) 中有用的連接劑 (linker)。它們也可以用作敏感的 (sensitive) 生物聚合物的穩定劑 (stabilizers)。在診斷設備或化妝品和藥物開發中,提供有價值的原材料。 |
羧甲基 (CM) 聚蔗糖 * | Carboxymethyl Polysucrose | 含有負電荷基團(負電荷) | 參見 CM – 葡聚醣。 |
DEAE – 葡聚醣 | DEAE Dextran | 含有正電荷基團(正電荷) | 在潰瘍性結腸炎 (UC, ulcerative colitis) 的研究中(參見硫酸葡聚醣鈉 (DSS)),作為追蹤硫酸葡聚醣鈉 (DSS) 體內命運和壽命的探針。 |
聚蔗糖 * | Polysucrose | 中性 | 一種具有低毒性、低滲透壓 (ow osmotic pressure)、生物相容的 (biocompatible),但不易在血液中降解和具有類似蛋白球狀構象 (protein-like, globular) 等很多有趣特性的蔗糖聚合物 (polysucrose)。具有比葡聚醣更緊湊的結構。易溶於水和鹽溶液。構象跟其他多醣比起來,更加類似於蛋白質的球狀結構。 |
葡聚醣季銨鹽 | Trimethylammonium alkyl dextran | 含有正電荷基團(正電荷) | 一種帶有季銨基團 (quaternary ammonium),不依賴於 pH 的帶正電荷的 (non-pH dependent positive charge) 陽離子聚合物。應用相類似於 DEAE – 葡聚醣,可作為載體、佐劑、體內 DNA 轉運體,但更穩定。 |
硫酸葡聚醣鈉 Dextran Sulphate Sodium (DSS)
- L-Threonine Supplementation During Colitis Onset Delays Disease Recovery, Joana Gaifem et al., Front Physiol, 2018.
- Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells, Aleksandar Nikolic et al., Biomedicine & Pharmacotherapy, 2018.
- Short-term Oral Antibiotics Treatment Promotes Inflammatory Activation of Colonic Invariant Natural Killer T and Conventional CD4+ T Cells, Claudia Burrello et al., Frontiers, 2018.
- The endogenous bioactive lipid prostaglandin D2-glycerol ester reduces murine colitis via DP1 and PPARγ receptors, Mireille Alhouayek et al., FASEB Journal, 2018.
- Lysophosphatidylinositols in inflammation and macrophage activation: Altered levels and anti-inflammatory effects, Julien Masquelier et al., Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 2018.
- Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection, Alain P. Gobert et al., Frontiers, 2018.
- Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A, N.Messal et al., Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 2018.
- Implementation of an automated inclusion system for the histological analysis of murine tissue samples: A feasibility study in DSS-induced chronic colitis, Fulvia Milena Cribiù et al., European Journal of Inflammation, 2018.
- Lactobacillus fermentum L930BB and Bifidobacterium animalis subsp. animalis IM386 initiate signalling pathways involved in intestinal epithelial barrier protection, D. Paveljšek et al., Beneficial Microbes, 2018.
- Site-directed polymer-drug complexes for inflammatory bowel diseases (IBD): Formulation development, characterization, and pharmacological evaluation, Siddharth S. Kesharwani et al., Journal of Controlled Release, 2018.
- Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate, Simon Ducheix et al., Gastroenterology, 2018
- Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model, M.L. Cuellar-Nuñez et al., Food Research International, 2018.
- The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis, Ana Cardoso et al., Frontiers, 2018.
- Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis, Ashish K.Singh et al., Redox Biology, 2018.
- Neuronal control of experimental colitis occurs via sympathetic intestinal innervation, R. A. Willemze et al., Neurogastroenterology & Motility, 2018.
- Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A, N. Messal et al., BBA – Molecular Basis of Disease, 2018.
- Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis, Marion Darnaud et al., Gastroenterology, 2018.
- Indoleamine 2,3-dioxygenase-dependent expansion of T-regulatory cells maintains mucosal healing in ulcerative colitis, Aleksandar Acovic et al., Therapeutic Advances in Gastroenterology, 2018
- A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation, K Radulovic et al., Mucosal Immunology, 2018.
- Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells, Daniele Maria-Ferreira et al., Scientific Reports, 2018.
- 1‐L‐MT, an IDO inhibitor, prevented colitis‐associated cancer by inducing CDC20 inhibition‐mediated mitotic death of colon cancer cells, Xiuting Liu et al., International Joural of Cancer, 2018.
- An HDAC6 Inhibitor Confers Protection and Selectively Inhibits B-Cell Infiltration in DSS-Induced Colitis in Mice, Anh Do et al., the Journal of Pharmacology and Experimental Therapeutics, 2017.
- Dextran sulphate sodium colitis in C57BL/6J mice is alleviated by Lactococcus lactis and worsened by the neutralization of Tumor necrosis Factor α, Aleš Berlec et al., International Immunopharmacology, 2017.
- Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue, Alexander V. Zhdanov et al., Cellular and Molecular Life Sciences, 2017.
- Mouse Model of Dextran Sodium Sulfate (DSS)-induced Colitis, Srustidhar Das et al., BioProtoc, 2017.
- Dietary Peptides from Phaseolus vulgaris L. Reduced AOM/DSS-Induced Colitis-Associated Colon Carcinogenesis in Balb/c Mice, Diego A. Luna-Vital et al., Plant Foods for Human Nutrition, 2017.
- Abnormalities in endocrine and immune cells are correlated in dextran‑sulfate‑sodium‑induced colitis in rats, Magdy El‑Salhy et al., Molecular Medicine Reports, 2017.
- Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis, Magdy El‑Salhy et al., Molecular Medicine Reports, 2017.
- Interactive effects of ethanol on ulcerative colitis and its associated testicular dysfunction in pubertal BALB/c mice, Isaac A.Adedara et al., Alcohol, 2017.
- Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes, Ana E. Carvajal et al., Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2017.
- Reelin expression is up-regulated in mice colon in response to acute colitis and provides resistance against colitis, Ana E.Carvajal et al., Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2017.
- Immune-protective effect of echinococcosis on colitis experimental model is dependent of down regulation of TNF-α and NO production, Lila Khelifi et al., Acta Tropica, 2017.
- Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice, Marco Constante et al., Frontiers, 2017.
- A novel model of colitis-associated cancer in SAMP1/YitFc mice with Crohn’s disease-like ileitis, Paola Menghini et al., PLOS ONE, 2017.
- Analysing the effect of I1 imidazoline receptor ligands on DSS-induced acute colitis in mice, Ágnes Fehér et al., Inflammopharmacology, 2017.
- Regulation of epithelial cell expressed C3 in the intestine – Relevance for the pathophysiology of inflammatory bowel disease?, Annika Sünderhauf etal., Molecular Immunology, 2017.
- Inhibition of matrix metalloproteinase‐9 by a barbiturate‐nitrate hybrid ameliorates dextran sulphate sodium‐induced colitis: effect on inflammation‐related genes, Shane O’Sullivan et al., British Journal of Pharmacology, 2017.
- Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine, René Pagel et al., The FASEB Journal, 2017.
- Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis, Jacopo Di Gregorio et al., PLOS ONE, 2017.
- Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07, Jana Štofilová et al., Biomedicine & Pharmacotherapy, 2017.
- Dietary Salt Exacerbates Experimental Colitis, Alan L. et al., J Immunol, 2017.
- Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium, Yu Matsuzawa-Ishimoto et al., Journal of Experimental Medicine, 2017.
- Myeloid-derived cullin 3 promotes STAT3 phosphorylation by inhibiting OGT expression and protects against intestinal inflammation, Xinghui Li, Zhibin Zhang et al., Journal of Experimental Medicine, 2017.
- NOD2 Suppresses Colorectal Tumorigenesis via Downregulation of the TLR Pathways, S.M. NashirUdden et al., Cell Reports, 2017
TRITC 標記葡聚醣 TRITC-dextran
- Nitric oxide production by glomerular podocytes, Oleg Palygin et al., Nitric Oxide, 2018.
- Computer-aided quantification of microvascular networks: Application to alterations due to pathological angiogenesis in the hamster, Carlos A.Bulant et al., Microvascular Research, 2017.
- Intravital imaging of the kidney in a rat model of salt-sensitive hypertension, Bradley T. Endres et al., Renal physiology, 2017.
- Honkura, N.; Richards, M,; Laviña, B.; Sáinz-Jaspeado, M.; Betsholtz, C.; Lena Claesson-Welsh, L. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat. Commun. 2018, 9, 2746.
- Bogoslowski, A.; Butcher, E. C.; Kubes, P. Neutrophils recruited through high endothelial venules of the lymph nodes via PNAd intercept disseminating Staphylococcus aureus. Proc. Natl. Acad. Sci. USA. 2018, 115(10), 2449–2454.
- Pradhan, S.; Smith, A. M.; Garson, C. J.; Hassani, I.; Seeto, W.J.; Pant, K.; Arnold, R. D.; Prabhakarpandian, B.; Lipke, E. A. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Sci. Rep. 2018, 8, 3171.
- Ogle, M. E.; Krieger, J. R.; Tellier, L. E.; McFaline-Figueroa, J.; Temenoff, J. S.; Botchwey, E. A. Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling. ACS Biomater. Sci. Eng. 2018, 4(4), 1241–1250.
- Farboud, B.; Jarvis, E.; Roth, T. L.; Shin, J.; Corn, J. E.; Marson, A.; Meyer, B. J.; Patel, N. H.; Hochstrasser, M. L. Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms. J. Vis. Exp. 2018, 135, 57350.
- Shaw, S. K.; Schreiber. L.; Roland, F. M.; Battles, P. M.; Brennan, S. P.; Padanilam, S. J.; Smith, B. D. High Expression of Integrin αvβ3 Enables Uptake of Targeted Fluorescent Probes into Ovarian Cancer Cells and Tumors. Bioorg. Med. Chem. 2018, 26(8), 2085–2091.
- Carbone, A.; Zefferino, R.; Beccia, E.; Casavola, V.; Castellani, S.; Gioia, S. D.; Giannone, V.; Seia, M.; Angiolillo, A.; Colombo, C.; Favia, M.; Conese, M. Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells. Stem Cells Int. 2018, 1203717.
- Linder, M. I.; Köhler, M.; Boersema, P.; Weberruss, M.; Wandke, C.; Marino, J.; Ashiono, C.; Picotti, P.; Antonin, W.; Kutay, U. Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins. Dev. Cell. 2017, 43(2), 141–156.
- Rohner, N. A.; Thomas, S. N. Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size. ACS Biomater Sci Eng. 2017, 3(2), 153–159.
- Falzone, N.; Ackerman, N. L.; Rosales, L. F.; Bernal, M. A.; Liu, X.; Peeters, S. G. J. A.; Soto, M. S.; Corroyer-Dulmont, A. ; Bernaudin, M.; Grimoin, E.; Touzani, O.; Sibson, N. R.; Vallis, K. A. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases. Theranostics. 2018, 8(1), 292–303.
- Steffensen, A. B.; Oernbo, E. K.; Anca Stoica, A.; Gerkau, N. J.; Barbuskaite, D.; Tritsaris, K.; Rose, C. R.; MacAulay, N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun. 2018, 9, 2167.
- Graham, D. M.; Andersen, T.; Sharek, L.; Uzer, G.; Rothenberg, K.; Hoffman, B. D.; Rubin, J.; Balland, M.; Bear, J. E.; Burridge, K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 2018, 217(3), 895–914.
- Williams,T. D.; Kay, R. R. The physiological regulation of macropinocytosis during Dictyostelium growth and development. J. Cell Sci. 2018, 131(6), jcs213736.
- Tran, N. B. N. N.; Knorr, F.; Mak, W. C. ; Cheung, K. Y.; Richter, H.; Meinke, M.; Lademann, J.; Patzelt, A. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin. Eur. J. Pharm. Biopharm. 2017, 116, 12-16.
- Trietsch, S. J.; Naumovska, E.; Kurek, D.; Setyawati, M. C.; Vormann, M. K.; Wilschut, K. J.; Lanz, H. L.; Nicolas, A.; Ng, C. P.; Joore, J.; Kustermann, S.; Roth, A.; Hankemeier, T.; Moisan, A.; Vulto, P. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 2017, 8, 262.
- Ford, C.; Nans, A.; Boucrot, E.; Hayward, R. D. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog. 2018, 14(5), e1007051.
- Herr, K. L.; Carey, A. M.; Heckman, T. I.; Chávez, J. L.; Johnson, C. N.; Harvey, E.; Gamroth, W. A.; Wulfing, B. S.; Van Kessel, R. A.; Marks, M. E. Exopolysaccharide production in Caulobacter crescentus: A resource allocation trade-off between protection and proliferation. PLoS One. 2018, 13(1), e0190371.
- Wang, R.; Chow, Y. T.; Chen, S.; Ma, D.; Luo, T.; Tan, Y.; Sun, D. Magnetic Force-driven in Situ Selective Intracellular Delivery. Sci. Rep. 2018, 8, 14205.
- Chiou, B.; Neal, E. H.; Bowman, A. B.; Lippmann, E. S.; Simpson, I. A.; Connor, J.R. Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One. 2018, 13(6), e0198775.
- Pradhan, S.; Smith, A. M.; Garson, C. J.; Hassani, I.; Seeto, W. J.; Pant, K.; Arnold, R. D.; Prabhakarpandian, B.; Lipke, E. A. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Sci. Rep. 2018, 8, 3171.
- Wang, Y.; Jin, Y.; Laviña, B.; Jakobsson, L. Characterization of multi-cellular dynamics of angiogenesis and vascular remodelling by intravital imaging of the wounded mouse cornea. Sci. Rep. 2018, 8, 10672.
- Passaro, D.; Tullio, A. D.; Abarrategi, A.; Rouault-Pierre, K.; Foster,K.; Ariza-McNaughton, L. Montaner, B.; Chakravarty, P.; Bhaw, L.; Diana, G.; Lassailly, F.; Gribben, J.; Bonnet, D. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell. 2017, 32(3), 324–341.
- Dvoryanchikov, G.; Hernandez, D.; Roebber, J. K.; Hill, D. L.; Roper, S. D.; Chaudhari, N. Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat. Commun. 2017, 8, 760.
- Fadzen, C. M.; Wolfe, J. M.; Choi-Fong Cho, C-F.; Chiocca, E. A.; Lawler, S. E.; Pentelute, B. L. Perfluoroarene–Based Peptide Macrocycles to Enhance Penetration Across the Blood–Brain Barrier. J. Am. Chem. Soc. 2017, 139(44), 15628–15631.
- van Duinen, V.; van den Heuvel, A.; Trietsch, S. J.; Lanz, H. L. ; van Gils, J. M.; van Zonneveld, A. J.; Vulto, P.; Hankemeier, T. 96 perfusable blood vessels to study vascular permeability in vitro. Sci. Rep. 2017, 7, 18071.
- Keane, T.J.; Dziki, J.; Sobieski, E.; Smoulder, A.; Castleton, A.; Turner, N.; White, L. J.; Badylak, S. F. Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. J. Crohns. Colitis. 2017, 11(3), 360-368.
- Xue, Z.; Zhang, X.; Chen, M.; Lu,X.; Deng, R.; Ma, Y. Dendritic Cells Transduced with Single Immunoglobulin IL-1-Related Receptor Exhibit Immature Properties and Prolong Islet Allograft Survival. Front Immunol. 2017, 8, 1671.
- Cardenal-Muñoz, E.; Barisch, C.; Lefrançois, L. H.; López-Jiménez, A. T.; Soldati, T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol. 2017, 7, 529.
- Oji, A.; Amano, T.; Maeta, Y.; Hori, N.; Hatsuzawa, K.; Sato, K.; Nakanishi, T. Fate of methylated/unmethylated H19 imprinting control region after paternal and maternal pronuclear injection. Exp. Anim. 2017, 66(4), 367–378.
- Vidil, T.; Hampu, N.; Hillmyer, M. A. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition. ACS Cent. Sci. 2017, 3(10), 1114–1120.
- Patzelt, A.; Mak, W. C.; Jung, S.; Knorr, F.; Meinke, M. C.; Richter, H.; Rühl, E.; Cheung, K. Y. Tran NBNN, Lademann J. Do nanoparticles have a future in dermal drug delivery? J. Control. Release. 2017, 246, 174-182.
- Olmeda, D.; Cerezo-Wallis, D.; Riveiro-Falkenbach, E.; Pennacchi, P. C.; Contreras-Alcalde, M.; Ibarz, N.; Cifdaloz, M.; Catena, X.; Calvo, T. G.; Cañón, E.; Alonso, D.; Suarez, J.; Osterloh, L.; Graña, O.; Mulero, F.; Megías, D.; Cañamero, M.; Martínez-Torrecuadrada, J.; Mondal, C.; Martino, J. D.; Lora, D.; Martinez-Corral, I.; Bravo-Cordero, J. J.; Muñoz, J.; Puig, S.; Ortiz-Romero, P.; Rodriguez-Peralto, J. L.; Ortega, S.; Soengas, M. S. Whole body imaging of lymphovascular niches identifies premetastatic roles of MIDKINE. Nature. 2017, 546(7660), 676–680.
- Paschke, P.; Knecht, D. A.; Silale, A.; Traynor, D.; Thomas D. Williams, T. D.; Thomason, P. A.; Insall, R. H.; Chubb, J. R.; Kay, R. R.; Veltman, D. M. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One. 2018, 13(5), e0196809.
- Kennedy, T.; Broadie, K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J. Neurosci. 2017, 37(41), 9844–9858. 35. von Dassow, G.; Maslakova, S. A. The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development. EvoDevo. 2017, 8, 19.
- Jin, Y.; Muhl, L.; Burmakin, M.; Wang, Y.; Duchez, A-C.; Betsholtz, C.; Arthur, H. M.; Jakobsson, L. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat. Cell Biol. 2017, 19(6), 639–652.
- Endres, B. T.; Sandoval, R. M.; Rhodes, G. J.; Campos-Bilderback, S. B.; Kamocka, M. M.; Christopher McDermott-Roe, Staruschenko, A.; Molitoris, B. A.; Geurts, A. M.; Palygin, O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am. J. Physiol. Renal. Physiol. 2017, 313(2), F163–F173.
- Pang, V.; David O. Bates, D. O.; Leach, L. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin. Clin. Sci. (Lond) 2017, 131(23), 2763–2775.
- Buckley, C. M.; Gopaldass, N.; Bosmani, C.; Johnston, S. A.; Soldati, T.; Insall, R. H.; King, J. S. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc. Natl. Acad. Sci. USA. 2016, 113(40), E5906–E5915.
- Longden, T. A.; Dabertrand, F.; Koide, M.; Gonzales, A. l.; Tykocki, N. R.; Joseph E. Brayden, J. E.; Hill-Eubanks, D.; Nelson, M. T. Capillary K+-sensing initiates retrograde hyperpolarization to locally increase cerebral blood flow. Nat. Neurosci. 2017, 20(5), 717–726.
- Zhang, B.; Montgomery, M.; Chamberlain, M. D.; Ogawa, S.; Korolj, A.; Pahnke, A.; Laura A. Well, L. A.; Massé, S.; Kim, J.; Reis, L.; Momen, A.; Nunes, S. S.; Aaron Wheeler, A.; Nanthakumar, K.; Keller, G.; Sefton, M. V.; Radisic, M. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosiss. Nat. Mater. 2016, 15(6), 669–678.
- Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E. E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah,H.; Xu, K.; Cross, J. R. Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016, 533(7604), 493–498.
- Wu, L.; Zhou, B.; Oshiro-Rapley, N.; Li, M.; Paulo, J. A.; Webster, C. M.; Mou, F.; Kacergis, M. C.; Talkowski, M. E.; Carr, C. E.; Gygi, S. P.; Zheng, B.; Soukas, A. A. An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer. Cell. 2016, 167(7), 1705–1718.
- Junemann, A.; Filić, V.; Winterhoff, M.; Nordholz, B.; Litschko, C.; Schwellenbach, H.; Stephan, T.; Weber, I.; Faix, J. A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc. Natl. Acad. Sci. USA. 2016, 22,113(47), E7464–E7473.
- Chow, Y. T.; Chen, S.; Wang, R.; Liu, C.; Kong, C.; Li, R. A.; Cheng, S. H.; Sun, D. Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Sci. Rep. 2016, 6, 24127.
- Emura, N.; Sakurai, N.; Takahashi, K.; Hashizume, T.; Sawai, K. OCT-4 expression is essential for the segregation of trophectoderm lineages in porcine preimplantation embryos. J. Reprod. Dev. 2016, 62(4), 401-8.
- Barreiro, O.; Cibrian, D.; Clemente, C.; Alvarez, D.; Moreno, V.; Valiente, I.; Bernad, A.; Vestweber, D.; Arroyo, A. G.; Martín, P.; von Andrian, U. H.; Madrid, F. S. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. eLife. 2016, 5, e15251.
- Tiwary, C. S.; Mudakavi, R. J.; Kishore, S. ; Kashyap, S.; Elumalai, R.; Chakravortty, D.; Raichur, A. M. ; Chattopadhyay, K. Magnetic iron nanoparticles for in vivo targeted delivery and as biocompatible contrast agents. RSC Adv. 2016, 6(115), 114344-114352.
- Venkatesh, D.; Mruk, D.; Herter, J. M.; Cullere, X.; Chojnacka, K.; Cheng, C. Y.; Mayadas, T. N. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. Am. J. Pathol. 2016, 186(2), 270–284.
- Song, K.H.; Fan, A. C.; Brlansky, J.T.;Trudeau, T.; Gutierrez-Hartmann, A.; Calvisi, M. L.; Borden, M. A. High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics. 2015, 5(12), 1419-27.
- Buchert, M.; Rohde, F.; Eissmann, M.; Tebbutt, N.; Williams, B.; Tan, C. W.; Owen, A.; Hirokawa, Y.; Gnann, A.; Orend, G.; Orner, G.; Dashwood, R. H.; Heath, J. K.; Ernst, M.; Janssen, K-P. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis. Model. Mech. 2015, 8(11), 1361–1373.
- Sato, M.; Sasaki,N.; Ato, M.; Hirakawa,S.; Sato, K.; Sato, K. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability. PLoS One. 2015, 10(9), e0137301.
- Joshi, G. N.; Goetjen, A. M.;Knecht, D. A.Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol. Biol. Cell. 2015, 26(18), 3150-64.
- Tanaka, M.; Tanaka, K.; Masaki, Y.; Miyazaki, M.; Kato, M.; Kotoh, K.; Enjoji, M.; Nakamuta, M.; Takayanagi, R. Intrahepatic microcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats. Int. J. Mol. Med. 2014, 33(2), 254-62.
- Falkenstein, K.; De Lozanne, A. Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion. J. Cell Sci. 2014, 127(20), 4356–4367.
- Yue, W.; Hamaï, A-; Tonelli, G.; Bauvy, C.; Nicolas, V.; Tharinger, H.; Codogno, P.; Mehrpour, M. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy. 2013, 9(5), 714–729.
- Kilarski, W. W.; Güç, E.; Teo, J. C. M.; Oliver, R. S.; Lund, A. W.; Swartz, M. A. intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PLoS One. 2013, 8(2), e57135.
- Ny, A.; Vandevelde, W.; Hohensinner, P.; Beerens, M.; Geudens, I.; Antonio Diez-Juan, A.; Brepoels, K.; Plaisance, S.; Krieg, P. A.; Langenberg, T.; Vinckier, S.; Luttun, A.; Carmeliet, P.; Dewerchin., M. A transgenic Xenopus laevis reporter model to study lymphangiogenesis. Biol. Open. 2013, 2(9), 882–890.
- Reeves, K. J.; Brookes, Z. L.; Reed, M. W.; Brown, N. J. Evaluation of fluorescent plasma markers for in vivo microscopy of the microcirculation. J. Vasc. Res. 2012, 49(2), 132-43.
- Pink, D. B.; Schulte, W.; Parseghian, M. H.; Zijlstra, A.; Lewis, J. D. Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS One. 2012, 7(3), e33760.
- Chandhoke, S. K.; Mooseker, M. S. A role for myosin IXb, a motor–RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol. Biol. Cell. 2012, 23(13), 2468–2480.
- Stenbeck, G.; Lawrence, K. M.; Anthony P. Albert, A. P. Hormone-stimulated modulation of endocytic trafficking in osteoclasts. Front Endocrinol (Lausanne) 2012, 3, 103.
- Zhang, J.; Li, J. X.; Razavi, F. S.; Mumin, A. M. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles. J. Nanopart. Res. 2011, 13(5), 1909-1916.
- Annesley, S. J.; Bago, R. B.; Bosnar, M. H.; Filic, V.; Marinović, M.; Weber, I.; Mehta, A.; Fisher, P. R. Dictyostelium discoideum nucleoside diphosphate kinase C plays a negative regulatory role in phagocytosis, macropinocytosis and exocytosis. PLoS One. 2011, 6(10), e26024.
- Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, A. M. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs Mater. Sci. Eng. C-Mater. Biol. Appl. 2011, 31(2), 342-349.
- Clarke, M.; Maddera, L.; Engel, U.; Gerisch, G.Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging. PLoS One. 2010, 5(1), e8585.
- Shah, G. V.; Muralidharan, A.; Gokulgandhi, M.; Soan, K.; Thomas, S.Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J. Biol. Chem. 2009, 284(2), 1018-30.
- Mairhofer, M.; Steiner, M.; Salzer, U.; Prohaska, R.Stomatin-like protein-1 interacts with stomatin and is targeted to late endosomes. J. Biol. Chem. 2009, 284(42), 29218-29.
- Tong, W-J.; Zhu, Y.; Gao, C-Y. Fabrication of protein microcapsules by controlled precipitation and cross-linking. Chem. J. Chin. Univ.-Chin. 2008, 29(8), 1694-1697.
- Tong, W.; Dong, W.; Gao, C.; Möhwald, H. Charge-controlled permeability of polyelectrolyte microcapsules. J. Phys. Chem. B. 2005, 109(27), 13159-65.
- Ackermann, C.; Dorresteijn, A.; Fischer, A. Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J. Morphol. 2005, 266(3), 258-80.
- Van der Wijk, T.; Tomassen, S. F.; Houtsmuller, A. B.; de Jonge, H. R. ; Tilly, B. C. Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J. Biol. Chem. 2003, 278(41), 40020-5.
- Fittipaldi, A.; Ferrari, A.; Zoppe, M, Arcangeli, C.; Pellegrini, V.; Beltram, F.; Giacca, M. Cell membrane lipidrafts mediatecaveolar endocytosis inHIV-1Tat fusionproteins. J. Biol. Chem. 2003(34), 141-49.
- Clarke, M.; Köhler, J.; Arana, Q.; Liu, T.; Heuser, J.; Gerisch, G. Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J. Cell Sci. 2002, 115, 2893-905.
- Symons, J. D.; Mullick, A. E.; Ensunsa, J. L.; Ma, A. A.; Rutledge, J. C. Hyperhomocysteinemia evoked by folate depletion: effects on coronary and carotid arterial function. Arterioscler. Thromb. Vasc. Biol. 2002, 22(5), 772-80.
- Kauppi, M.; Simonsen, A.; Bremnes, B.; Vieira, A.; Callaghan, J.; Stenmark, H.; Olkkonen, V. M. The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J. Cell. Sci. 2002, 115, 899-911.
- Mullick, J.; Walsh, B.A.; Reiser, K.M.; Rutledge, J. C. Chronic estradiol treatment attenuates stiffeningglycol-oxida- tionandpermeability of therat caroidarteries. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H2204-H2210.
- Walsh, B. A.; Mullick, A. E.; Banka, C. E.; Rutledge, J. C. 17beta-estradiol acts separately on the LDL particle and artery wall to reduce LDL accumulation. J. Lipid Res. 2000, 41(1), 134-41.
- Gardner, G.; Banka, C.L.; Roberts, K.A.; Mullick, A.E.; Rutledge, J.C. Modified LDL-mediated increases in endothelial layer permeability are attenuated with 17 beta-estradiol. Arterioscler. Thromb. Vasc. Biol. 1999, 19(4), 854-61.
- Geisow, M. J. Fluorescein conjugates as indicators of subcellular pH. A critical evaluation. Exp. Cell Res. 1984, 150(1), 29-35.
FITC 標記葡聚醣 FITC-dextran
- Early effects on the intestinal barrier and pancreatic function after enteral stimulation with protease or kidney bean lectin in neonatal rats, Ester Arévalo Sureda et al., British Journal of Nutrition, 2018.
- Blood-brain barrier integrity in a mouse model of Alzheimer’s disease with or without acute 3D6 immunotherapy, Sofia Gustafsson et al., Neuropharmacology, 2018.
- European Journal of Vascular and Endovascular Surgery, Mariadas Graças C de Souza et al., European Journal of Vascular and Endovascular Surgery, 2018.
- Interaction between sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways in experimental intestinal fibrosis. An in vivo immunohistochemical study, Roberta Sferra et al., Eur J Histochem, 2018.
- Cross-Inhibition of Norrin and TGF-β Signaling Modulates Development of Retinal and Choroidal Vasculature, Roswitha Seitz et al., Investigative Ophthalmology & Visual Science, 2018.
- Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes, Laurent Genser, The Journal of Pathology, 2018.
- Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats, Marion Rincel et al., Brain Structure and Function, 2018.
- Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota, Cécilia Landman et al., 2018.
- Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo, Kaiyi Zhang et al., PLOS Pathogens, 2018.
- Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment, Candice E. Van Skike et al., American Journal of Physiology-Heart and Circulatory Physiology, 2017.
- Early effects on the intestinal barrier and pancreatic function after enteral stimulation with protease or kidney bean lectin in neonatal rats, Ester Arévalo Sureda et al., British Journal of Nutrition, 2018.
- Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys, Jason A. Collett et al., Journal of the American Society of Nephrology, 2017.
- Gut–Lung Connection in Pulmonary Arterial Hypertension, Benoît Ranchoux et al., American Journal of Respiratory Cell and Molecular Biology, 2017.
- Trandermal delivery of macromolecule using sonophoresis with cavitation seed: In-vivo study, H. Park et al., 2017 IEEE International Ultrasonics Symposium (IUS), 2017.
- Formulation and Drug Loading Features of Nano-Erythrocytes, Xiaoting Dong et al., Nanoscale Research Letters, 2017.
- Silk fibroin degumming affects scaffold structure and release of macromolecular drugs, KiraNultsch et al., European Journal of Pharmaceutical Sciences, 2017.
- Computer-aided quantification of microvascular networks: Application to alterations due to pathological angiogenesis in the hamster, Carlos A.Bulant et al., Microvascular Research, 2017.
- Contribution of the tricellular tight junction to paracellular permeability in leaky and tight epithelia, Susanne M. Krug, Annals of the New York Academy of Sciences, 2017.
- Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease, Clarissa R. Nascimento et al., Frontiers, 2017.
- TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy, De-Wei Lai et al., Circulation Research, 2017.
- Crystal structure of the tricellulin C‐terminal coiled‐coil domain reveals a unique mode of dimerization, Anja Schuetz et al., Annals of the New York Academy of Sciences, 2017.
- Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium, Daniel C. Propheter et al., Proc Natl Acad Sci U S A, 2017.
- The Role of Angiotensin II in Glomerular Volume Dynamics and Podocyte Calcium Handling, Daria V. Ilatovskaya et al., Scientific Reports, 2017.
- Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury, Amy McCurley et al., J Am Soc Nephrol, 2017.
- Inactivation of Interferon Receptor Promotes the Establishment of Immune Privileged Tumor Microenvironment, Kanstantsin V.Katlinski et al., Cancer Cell, 2017.
神經系統 Nervous system
- Brandt, H.M., Apkarian, A.V., 1992. Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. Journal of Neuroscience Methods 45, 35-40. doi:10.1016/0165-0270(92)90041-B
- Foster, E.F., Bottjer, S.W., 1998. Axonal connections of the High Vocal Center and surrounding cortical regions in juvenile and adult male zebra finches. J. Comp. Neurol. 397, 118-138. doi:10.1002/(SICI)1096-9861(19980720)397:1<118::AID-CNE9>3.0.CO;2-3
- Fritzsch, B., Northcutt, R.G., 1992. A Plastic Embedding Technique for Analyzing Fluorescent Dextran-Amine Labelled Neuronal Profiles. Biotech Histochem 67, 153-157. doi:10.3109/10520299209110026
- Glover, J.C., Petursdottir, G., Jansen, J.K.S., 1986. Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. Journal of Neuroscience Methods 18, 243-254. doi:10.1016/0165-02701(86)90011-7
- Gross, J.B., Hanken, J., 2004a. Use of fluorescent dextran conjugates as a long-term marker of osteogenic neural crest in frogs. Dev. Dyn. 230, 100-106. doi:10.1002/dvdy.20036
- Larsen, K.E., Sulzer, D., 2002. Autophagy in neurons a review [WWW Document]. URL https://digitum.um.es/xmlui/handle/10201/20821 (accessed 5.26.15)
- Mooradian, A.D., Haas, M.J., Batejko. O., Hovsepyan, M., Feman, S.S., 2005. Statins Ameliorate Endothelial Barrier Permeability Changes in the Cerebral Tissue of Streptozotocin-Induced Diabetic Rats. Diabetes 54. 2977-2982. doi:10.2337/diabetes.54.10.2977
癌症 Cancer
- Chen, M.-Y., Chen, Z.-Z., Wu, L.-L., Tang, H.-W., Pang, D-W., 2013. Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition. Analyst 138, 7411-7416. doi:10.1039/C3AN01654D
- Dai, T., Zhou, S., Yin, C., Li, S., Cao, W., Liu, W., Sun, K., Dou, H., Cao, Y., Zhou, G., 2014. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials 35, 8227-8235. doi:10.1016/j.biomaterials.2014.06.012
- Hosseini, A., Baker, J.L., Tokin, C.A., Qin, Z., Hall, D.J., Stupak, D.G., Hayashi, T., Wallace, A.M., Vera, D.R., 2014. Fluorescent-tilmanocept for tumor margin analysis in the mouse model. J. Surg. Res. 190, 528-534. doi:10.1016/j.jss. 2014.05.012
- Loo, C., Lin, A., Hirsch, L., Lee, M.-H., Barton, J., Halas, N., West, J., Drezek, R., 2004. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technol Cancer Res Treat 3, 33-40. doi:10.1177/153303460400300104
- Potiron, V.A., Abderrahmani, R., Clément-Colmou. K., Marionneau-Lambot, S., Oullier, T., Paris, F., Supiot, S., 2013. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS ONE 8, e84076. doi:10.1371/journal.pone.0084076
- Varshosaz, J., Hassanzadeh, F., Sadeghi Aliabadi, H., Nayobsadrian, M., Banitalebi, M., Rostami, M., 2014. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. Biomed Res Int 2014, 525684. doi:10.1155/2014/525684
- Wang, X., Xing, X., Zhang, B., Liu, F., Cheng, Y., Shi, D., 2014. Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells. Int J Nanomedicine 9, 1601-1615. doi:10.2147/IJN.S58334
心臟疾病 Heart
- Binelli, E.A., Luna, A.N., LeClair, E.E., 2014. Anatomy and ontogeny of a novel hemodynamic organ in zebrafish. Anat Rec (Hoboken) 297, 2299-2317. doi:10.1002/ar.23002
- Camilleri, J.P., Nlom, M.O., Joseph, D., Michel, J.B., Barres, D., Mignot, J., 1983. Capillary perfusion patterns in reperfused ischemic subendocardial myocardium: Experimental study using fluorescent dextran. Experimental and Molecular Pathology 39, 89-99. doi:10.1016/0014-4800(83)90043-6
腦 & 血腦障壁 Brain & Brain-blood barrier
- Bass, A.H., Gilland, E.H., Baker, R., 2008. Evolutionary Origins for Social Vocalization in a Vertebrate Hindbrain-Spinal Compartment. Science 321, 417-421. doi:10.1126/science.1157632
- Bommana, M.M., Kirthivasan. B. Squillante. E., 2012. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Delivery 19, 298-306. doi:10.3109/10717544.2012.714812
- Carthy, D.J.M., Malhotra, M., O’Mahony, A.M., Cryan, J.F., O’Driscoll, C.M., 2014. Nanoparticles and the Blood-Brain Barrier: Advancing from In-Vitro Models Towards Therapeutic Significance. Pharm Res 32, 1161-1185. doi:10.1007/s11095-014-1545-6
- Fritzsch, B., 1993. Fast axonal diffusion of 3000 molecular weight dextran amines. Journal of Neuroscience Methods 50, 95-103. doi:10.1016/0165-0270(93)90060-5
- Hoffmann, A., Bredno, J., Wendland, M., Derugin, N., Ohara, P., Wintermark, M., 2010. High and Low Molecular Weight Fluorescein Isothiocyanate (FITC)-Dextrans to Assess Blood-Brain Barrier Disruption: Technical Considerations. Transl. Stroke Res. 2, 106-111. doi:10.1007/s12975-010-0049-X
- Lehmann, T.-N., Gabriel, S., Eilers, A., Njunting, M., Kovacs, R., Schulze, K., Lanksch, W.R., Heinemann, U., 2001. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. European Journal of Neuroscience 14. 83-95. doi:10.1046/j.0953-816x.2001.01632.x
- Lehmann, T.-N., Gabriel, S., Kovacs, R. Eilers, A., Kivi, A., Schulze, K., Lanksch, W.R., Meencke, H.J., Heinemann. U., 2000. Alterations of Neuronal Connectivity in Area CA1 of Hippocampal Slices from Temporal Lobe Epilepsy Patients and from Pilocarpine-Treated Epileptic Rats. Epilepsia 41, S190-S194. doi:10.1111/j.1528-1157.2000.tb01580.x
- Liao, G.P., Olson, S.D., Kota, D.J., Hetz, R.A., Smith, P., Bedi, S., Cox, C.S., 2014. Far-red tracer analysis of traumatic cerebrovascular permeability. J. Surg. Res. 190, 628-633. doi:10.1016/j.jss.2014.05.011
- Linke, R., De Lima, A. d., Schwegler, H., Pape, H.-C., 1999. Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala. J. Comp. Neurol. 403, 158-170. doi:10.1002/(SICI)1096-9861(19990111)403:2<158-AID-CNE2>3.0.CO;2-6
- Mooradian, A.D., Haas, M.J., Batejko, O., Hovsepyan, M., Feman, S.S., 2005. Statins Ameliorate Endothelial Barrier Permeability Changes in the Cerebral Tissue of Streptozotocin-Induced Diabetic Rats. Diabetes 54. 2977-2982. doi:10.2337/diabetes.54.10.2977
- Morita, S., Miyata, S., 2013. Accessibility of low-molecular-mass molecules to the median eminence and arcuate hypothalamic nucleus of adult mouse. Cell Biochem. Funct. 31, 668-677. doi:10.1002/cbf.2953
- Ohta, Y., Dubuc, R., Grillner, S., 1991. A new population of neurons with crossed axons in the lamprey spinal cord. Brain Research 564, 143-148. doi:10.1016/0006 8993(91)91364-7
- Sajja, R.K., Prasad, S., Cucullo, L., 2014. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS 11, 8. doi:10.1186/2045-8118-11-8
- Sarkar, S., Schmued, L., 2012. In vivo administration of fluorescent dextrans for the specific and sensitive localization of brain vascular pericytes and their characterization in normal and neurotoxin exposed brains. NeuroToxicology, Special Review Section 33, 436-443. doi:10.1016/j.neuro.2012.04.004
- Schmucd, L., Kyriakidis, K., Heimer. L., 1990. In vivo anterograde and retrograde axonal trnasport of the fluoresecent rhodamine-dextran-amine, Fluor-Ruby, within the CNS. Brain Research 526, 127-134. doi:10.1016/0006-8993(90)90258-D
- Shi, L., Zeng, M., Sun, Y., Fu, B.M., 2014. Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136, 031005. doi:10.1115/1.4025892
淋巴系統 Lymphatic system
- Baker, A., Semple, J.L., Moore, S., Johnston, M., 2014. Lymphatic function is impaired following irradiation of a single lymph node. Lymphat Res Biol 12, 76-88 doi:10.1089/Irb.2013.0036
- Emerson, D.K., Limmer, K.K., Hall. D.J., Han, S.-H., Eckelman, W.C., Kane, C.J., Wallace, A.M., Vera, D.R., 2012. A receptor-targeted fluorescent radiopharmaceutical for multireporter sentinel lymph node imaging. Radiology 265, 186-193. doi:10.1148/radiol.12120638
- Karpanen, T., Wirzenius, M., Mäkinen, T., Veikkola, T., Haisma, H.J., Achen, M.G., Stacker, S.A., Pytowski, B., Ylä-Herttuala, S., Alitalo, K., 2006. Lymphangiogenic Growth Factor Responsiveness Is Modulated by Postnatal Lymphatic Vessel Maturation. The American Journal of Pathology 169.708-718. doi:10.2353/ajpath.2006.051200
- Küchler, A.M., Gjini, E., Peterson-Maduro, j., Cancilla, B., Wolburg, H., Schulte-Merker, S., 2006. Development of the Zebrafish Lymphatic System Requires Vegfc Signaling. Current Biology 16, 1244-1248. doi:10.1016/j.cub.2006.05.026
- Leu, A.J., Berk, D.A., Lymboussaki, A., Alitalo, K., Jain, R.K., 2000. Absence of Functional Lymphatics within a Murine Sarcoma: A Molecular and Functional Evaluation. Cancer Res 60, 4324-4327.
- Liss, M.A., Stroup, S.P., Qin, Z., Hoh, C.K., Hall, D.J., Vera, D.R., Kane, C.J., 2014. Robotic-assisted fluorescence sentinel lymph node mapping using multimodal image guidance in an animal model. Urology 84, 982.e9-14. doi:10.1016/j.urology.2014.06.021
- Su, H., Mou, Y., An, Y., Han, W., Huang, X, Xia, G., Ni, Y., Zhang, Y., Ma, J., Hu, Q., 2013. The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging. Int J Nanomedicine 8, 3737-3744. doi:10.2147/IJN.S52135
胚胎研究 Embryonic studies
- Albukhaty, S., Naderi-Manesh, H., Tiraihi. T., 2013. In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. Iran. Biomed. J. 17, 71-76.
- Hodor, P.G., Ettensohn, C.A., 1998. The Dynamics and Regulation of Mesenchymal Cell Fusion in the Sea Urchin Embryo. Developmental Biology 199, 111-124. doi:10.1006/dbio. 1998.8924
- Kim, K., Drummond, I., Ibraghimov-Beskrovnaya, O., Klinger, K., Arnaout, M.A., 2000. Polycystin 1 is required for the structural integrity of blood vessels. PNAS 97, 1731-1736. doi:10.1073/pnas.040550097
- Mehlmann, L.M., Jones, T.L.Z., Jaffe, L.A., 2002. Meiotic Arrest in the Mouse Follicle Maintained by a Gs Protein in the Oocyte. Science 297, 1343-1345. doi:10.1126/science.1073978
- Zhong, T.P., Childs, S., Leu, J.P., Fishman, M.C., 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220. doi:10.1038/35102599
膜研究 Membrane studies
- Chazotte, B., 2009. Labeling Pinocytotic Vesicles and Cytoplasm with Fluorescent Dextrans or Ficolls for Imaging Cold Spring Harb Protoc 2009, pdb.prot4951. doi:10.1101/pdb.prot4951
- Fischer, C., Steffensen, J.F., 2007. Plasma FITC-dextran exchange between the primary and secondary circulatory systems in the Atlantic cod, Gadus Morhua. Fish Physiol Biochem 34, 245-249. doi:10.1007/s10695-007-9183-0
- Gillies, L.A., Du, H., Peters, B., Knudson, C.M., Newmeyer, D.D., Kuwana, T., 2015. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Mol. Biol. Cell 26, 339-349. doi:10.1091/mbc.E13-11-0638
- Kato, M., Neil, T.K., Fearnley, D.B., McLellan, A.D., Vuckovic, S., Hart, D.N.J., 2000. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int. Immunol. 12, 1511-1519. doi:10.1093/intimm/12.11.1511
- Khanna, S., Hudson, B., Pepper, C.J., Amso. N.N., Coakley, W.T., 2006. Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5 mhz ultrasonic standing wave in the presence of contrast agent. Ultrasound in Medicine & Biology 32, 289-295. doi:10.1016/j.ultrasmedbio.2005.11.002
- Kotb, A.M., Müller, T., Xie, J., Anand-Apte. B., Endlich. K. Endlich, N., 2014. Simultaneous assessment of glomerular filtration and barrier function in live zebrafish. Am. J. Physiol. Renal Physiol. 307, F1427-1434. doi:10.1152/ajprenal.00029.2014.
- Lai, X., Price, C., Lu. X.L., Wang, L., 2014. Imaging and quantifying solute transport across periosteum: implications for muscle-bone crosstalk. Bone 66, 82-89. doi:10.1016/j.bone.2014.06.002
- Leopold, E., Gefen, A., 2013. Changes in permeability of the plasma membrane of myoblasts to fluorescent dyes with different molecular masses under sustained uniaxial stretching. Med Eng Phys 35. 601-607. doi:10.1016/j.medengphy.2012.07.004
- Ley, K., Arfors, K.-E., 1986. Segmental differences of microvascular permeability for FITC-dextrans measured in the hamster cheek pouch. Microvascular Research 31, 84-99. doi:10.1016/0026-2862(86)90009-9
- Li, H., Dou, S.-X., Liu, Y.-R., Li, W., Xie, P., Wang, W.-C., Wang, P.-Y., 2015. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum. J. Am. Chem. Soc. 137, 436-444. doi:10.1021/ja511273c
- Li, L., Wan, T., Wan, M., Liu, B., Cheng, R., Zhang, R., 2015. The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol. Int. 39, 531-539. doi:10.1002/cbin.10424
- Lindsey, J.D., Weinreb, R.N., 2002. Identification of the Mouse Uveoscleral Outflow Pathway Using Fluorescent Dextran. Invest. Ophthalmol. Vis. Sci. 43, 2201-2205.
- Paszti-Gere, E., Barna, R.F., Kovago, C., Szauder, I., Ujhelyi, G., Jakab, C., Meggyesházi, N., Szekacs, A., 2014. Changes in the Distribution of Type II Transmembrane Serine Protease, TMPRSS2 and in Paracellular Permeability in IPEC-J2 Cells Exposed to Oxidative Stress. Inflammation 38, 775-783. doi:10.1007/s10753-014-9988-9
- Patel, M.P., Churchman, S.T., Cruchley, A.T., Braden, M., Williams, D.M., 2013. Electrically induced transport of macromolecules through oral buccal mucosa. Dent Mater 29, 674-681. doi:10.1016/j.dental. 2013.03.016
- Sánchez-Eugenia, R., Goikolea, J., Gil-Cartón, D., Sánchez-Magraner, L., Guérin, D.M.A., 2015. Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J. Virol. 89.4645-4654. doi:10.1128/JVI.00011-15
- Shi, X., Zhang, F., Urdang, Z., Dai, M., Neng, L., Zhang, J., Chen, S., Ramamoorthy, S., Nuttall, A.L., 2014. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow. Hear. Res. 313, 38-46. doi:10.1016/j.heares.2014.04.006
- Wijk, T. van der, Tomassen, S.F.B., Houtsmuller, A.B., Jonge, H.R. de, Tilly, B.C., 2003. Increased Vesicle Recycling in Response to Osmotic Cell Swelling CAUSE AND CONSEQUENCE OF HYPOTONICITY-PROVOKED ATP RELEASE. J. Biol. Chem. 278.40020-40025. doi:10.1074/jbc.M307603200
藥物制放 Drug delivery
- Atkinson, E.G., Jones, S., Ellis, B.A., Dumonde, D.C., Graham, E., 1991. Molecular size of retinal vascular leakage determined by FITC-dextran angiography in patients with posterior uveitis. Eye 5, 440-446. doi:10.1038/eve.1991.71
- Blagus, T., Markelc, B., Cemazar, M., Kosjek, T., Preat, V., Miklavcic, D., Sersa, G., 2013. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Release 172, 862-871. doi:10.1016/j.jconrel 2013.09.030
- Boric, M.P., Roblero, J.S., Duran, W.N., 1987. Quantitation of bradykinin-induced microvascular leakage of FITC-Dextran in rat cremaster muscle. Microvascular Research 33, 397-412. doi:10.1016/0026-2862(87)90030-6
- Kastner, C., Löbler, M., Sternberg, K., Reske, T., Stachs, O., Guthoff, R., Schmitz, K.-P., 2013. Permeability of the anterior lens capsule for large molecules and small drugs. Curr. Eye Res. 38, 1057-1063. doi:10.3109/02713683.2013.803288
- Lung Diseases and Conditions: New Lung Injury Findings from Rush University Outlined (Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury), 2014. Life Science Weekly 2442.
- Miller, D.L., Pislaru, S.V., Greenleaf. J.F., 2002. Sonoporation: Mechanical DNA Delivery by Ultrasonic Cavitation. Somat Cell Mol Genet 27, 115-134. doi:10.1023/A:1022983907223
- Reiner, A., Veenman, C.L., Medina, L., Jiao, Y., Del Mar, N., Honig, M.G., 2000. Pathway tracing using biotinylated dextran amines. Journal of Neuroscience Methods 103, 23-37. doi:10.1016/S0165-0270(00)00293-4
- Wu, D.-O., Lu, B., Chang, C., Chen, C-S., Wang, T., Zhang, Y.-Y., Cheng, S.-X., Jiang, X.-J., Zhang, X.-Z., Zhuo, R.-X., 2009. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 30, 1363-1371. doi:10.1016/j.biomaterials.2008.11.027
- Wu, X.-M., Todo, H., Sugibayashi, K., 2006. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. International Journal of Pharmaceutics 316, 102-108. doi:10.1016/j.ijpharm.2006.02.046
一般研究 General research
- Dhital, S., Shelat, K.J., Shrestha, A.K., Gidley, M.J., 2013. Heterogeneity in maize Starch granule internal architecture deduced from diffusion of fluorescent dextran probes. Carbohydrate Polymers 93, 365-373. doi:10.1016/j.carbpol.2012.12.017
- Gee, K.R., Weinberg, E.S., Kozlowski. DJ., 2001. Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorganic & Medicinal Chemistry Letters II, 2181-2183. doi:10.1016/S0960-894X(01)00421-8
- Kaneko, T., Sacki, K., Lee, T., Mizuno, N., 1996. Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR)-dextran amine by means of an acidic injection vehicle and antibodies against TMR. Journal of Neuroscience Methods 65, 157-165. doi:10.1016/0165-0270(95)00162-X
- Liu, H., Song, P., Wei, R., Li, K., Tong, A., 2014. A facile, sensitive and selective fluorescent probe for heparin based on aggregation-induced emission. Talanta 118 348-352. doi:10.1016/j.talanta 2013.09.055
- Morgan, J.L, Kerschensteiner, D., 2012. Coating Particles with Dextran-Conjugated Fluorescent Dyes or Other Hydrophilic Compounds. Cold Spring Harb Protoc 2012, pdb.prot067058. doi:10.1101/pdb.prot067058
- Novikova, L., Novikov, L., Kellerth, J.-O., 1997. Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. Journal of Neuroscience Methods 74, 9-15. doi:10.1016/S0165-0270(97)02227-9
- Zhou, S., Dou, H., Zhang, Z., Sun, K., Jin, Y., Dai, T., Zhou, G., Shen, Z., 2013a. Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells. Polym. Chem. 4, 4103-4112. doi:10.1039/C3PY00522D
其它 OTHER
- Dolleman-Van der Weel, M.J., Wouterlood, F.G., Witter, M.P., 1994. Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine- and biotin-conjugated dextran amine. Journal of Neuroscience Methods 51, 9-21. doi:10.1016/0165-0270(94)90021-3
- Gerlach, G.F., Wingert, R.A., 2014. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev. Biol. 396, 183-200. doi:10.1016/j.ydbio.2014.08.038
- Harris, N.R., Watts, M.N., Leskova, W., 2013. Intravital video microscopy measurements of retinal blood flow in mice. J Vis Exp 51110. doi:10.3791/51110
- Lanske, B., Karaplis, A.C., Lee, K., Luz, A., Vortkamp. A., Pirro, A., Karperien, M., Defize, L.H.K., Ho, C., Mulligan, R.C., Abou-Samra, A.-B., Jüppner, H., Segre, G.V., Kronenberg, H.M., 1996. PTH/PTHrP Receptor in Early Development and Indian Hedgehog–Regulated Bone Growth Science 273, 663-666. doi:10.1126/science.273.5275.663
- Miller, D.L., Bao, S., Morris, J.E., 1999. Sonoporation of cultured cells in the rotating tube exposure system. Ultrasound in Medicine & Biology 25, 143-149. doi:10.1016/S0301-5629(98)00137-9
- Miller, DL. Quddus, J. 2000. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound in Medicine & Biology 26, 661-667. doi:10.1016/S0301-5629(99)00170-2
- Reeves, K.J., Brookes, Z.L.S., Reed, M.W.R., Brown, N.J., 2012. Evaluation of Fluorescent Plasma Markers for in vivo Microscopy of the Microcirculation. Journal of Vascular Research 49. 132-143. doi:10.1159/000331281
- Richmond, F.J.R., Gladdy, R., Creasy, J.L. Kitamura, S., Smits, E., Thomson, D.B., 1994. Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones. Journal of Neuroscience Methods 53, 35-46. doi:10.1016/0165-0270(94)90142-2
羧甲基 (CM) 葡聚醣 Carboxymethyl Dextran
- Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin, Maya Juenet, Biomaterials, 2018.
DEAE – 葡聚醣 DEAE Dextran
- Comparative analysis of nanosystems’ effects on human endothelial and monocytic cell functions, Jasmin Matuszak, Nanotoxicology, 2018.
藍色葡聚醣 BLUE-dextran
- The mechanism behind the biphasic pulsatile drug release from physically mixed poly(dl-lactic(-co-glycolic) acid)-based compacts, Max Beugeling et al., International Journal of Pharmaceutics, 2018.
FITC 標記菊糖 FITC-inulin
- Protective role of Trpc6 knockout in the progression of diabetic kidney disease, Denisha Spires et al., Renal Physiology, 2018.
- A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system, Björne B. Mollet et al., Journal of Tissue Engineering and Regenerative Medicine, 2015.
- Essential role of Kir5.1 channels in renal salt handling and blood pressure control, Oleg Palygin et al., JCI Insight, 2017.
羧甲基 (CM) 葡聚醣 Carboxymethyl Dextran
- A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells, Bradley W. Ficko et al., IEEE Transactions on Biomedical Engineering, 2016.
- Regulation of Scaffold Cell Adhesion Using Artificial Membrane Binding Proteins, Madeline Burke et al., Macromolecular Bioscience, 2017.
硫酸葡聚醣 Dextran Sulfate (DXS)
- Mast Cell Coupling to the Kallikrein–Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease, Clarissa R. Nascimento et al., Frontiers, 2017.
- Aspherical, Nanostructured Microparticles for Targeted Gene Delivery to Alveolar Macrophages, Michael Möhwald, Advanced Healthcare Materials, 2017.
Small molecular weight dextrans
- Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology, Ruben M.Sandoval et al., Methods, 2017.
FITC Ficoll
- Therapeutic potential of Mesenchymal Stem Cells for the treatment of diabetic peripheral neuropathy, Marianna Monfrini et al., Experimental Neurology, 2017.
出版品列表
- A.N.de Belder, E.J.Bourne and J.B.Pridham, ß-Glucopyranosides of Hydroxymethyl- and Hydroxyethyl-ferrocene, J.Chem.Soc., 1961, 879, 4464-4467.
- A.N.de Belder, B.Lindberg and O.Theander, Partial methylation Studies on methyl ß-D-Glucopyranoside and some Derivatives, Acta Chem. Scand., 1962, 16, 2005-2009.
- A.N.de Belder, P.J.Garegg, B.Lindberg et al., The Preparation of 2-tetrahydropyranyl ß-D-Glcopyranosides and methyl 4-(2-tetrahydropyranyl) –ß-D-glucopyanosides, Acta Chem. Scand., 1962, 16, 623-628.
- A.N.de Belder, E.J.Bourne and H.Weigel, Studies on tert-butyl derivatives of D-Glucose, Carbohyd.Res.,1966, 3, 1-6.
- A.N.de Belder, B.Lindberg and S.Svensson, Synthesis of Keto-dextrans, Acta Chem. Scand., 1968, 22, 949-952.
- A.N.de Belder and B.Norrman, The Distribution of substituents in Partially Acetylated Dextran, Carbohyd. Chem., 1968, 8, 1-6.
- A.N.de Belder and B.Norrman, The Substitution Patterns of O-(2-hydroxyethyl)starch and O-(2-hydroxyethyl)dextran, 1969, 10, 391-394.
- K.A.Granath, R.Strömberg and A.N.de Belder, Studies on Hydroxyethyl Starch, Die Stärke, 1969, 21, 251-256.
- A.W.Richter and A.N.de Belder, Antibodies against Hydroxyethylstarch produced in Rabbits by Immunisation with a Protein-Hydroxyethylstarch conjugate, Int.Archs Allergy Appl. Immun., 1976, 52, 307-314.
- A.N.de Belder and K.Granath, Preparation and Properties of Fluorescein-labelled dextrans, Carbohydr. Chem., 1973, 30, 375-378.
- A.N.de Belder and K.O.Wik, Preparation and Properties of Fluorescein-labelled hyaluronate, Carbohydr. Chem., 1975, 44, 251-257.
- A.N.de Belder and E.Wirén, Convenient synthesis of 2-substituted derivatives of methyl alpha-D-glucoside. Carbohyd.Res., 1972, 24, 166-168.
- L.Ahrgren and A.N.de Belder, The action of Fenton’s reagent on Dextran, Die Stärke, 1975, 27, 121-123.
- A.N.de Belder, Cyclic acetals of the aldoses and aldosides, in Advances Carbohydr.Chem.,1965, 20, 219-302.
- A.N.de Belder, Dextran in ‘Industrial Gums’, Academic Press, N.Y. 1993, 399-425.
- A.N.de Belder, Dextran in ‘Ullman’s Encyclopedia of Industrial Chemistry, Wiley, 2009.