Ampli1™ WGA Kit 單顆細胞全基因組擴增套組
Ampli1™ WGA Kit 單顆細胞全基因組擴增套組 ,單顆細胞中使全基因組擴增優化,單一引子進行PCR,確保相間比例擴增DNA片段,平均且完整擴增DNA片段,擴增長度0.2~2K bp 適用任何種類的細胞,單管操作,無需沉澱DNA,滅少損失,過程快速,手動操作時間1.5小時,單顆細胞最多可獲得4ug DNA 適用於後續的基因分析應用,包括全基因組定序。
分類:Ampli1 試劑套組 > 分子分析相關試劑盒 > 試劑溶液
漫談單細胞全基因組定序分析系列文章 – 如何選擇適合 WGA 分析方法
產品優勢
- 單顆細胞中使全基因組擴增優化
- 單一引子進行PCR,確保相間比例擴增DNA片段
- 平均且完整擴增DNA片段,擴增長度0.2~2K bp
- 適用任何種類的細胞
- 單管操作,無需沉澱DNA,滅少損失
- 操作容易,易於在實驗室建立
- 過程快速,手動操作時間1.5小時
- 單顆細胞最多可獲得4ug DNA
- 適用於後續的基因分析應用,包括全基因組定序
- Ampli1™ WGA Kit將WGA產物ADO rate降至最低
請左右移動表格位置查看更完整內容
%ADO Measured |
|||||
Papers WGA |
2014 |
2015 |
2016 |
2017 |
2016 |
(5) Binder V et al |
(9) Huang L et al |
(3) Babayan A et al |
(10) Borgström E et al |
(4) Normand E et al |
|
WGS |
WGS |
WES |
WES |
STR |
|
Ampli 1™ |
2% |
9% |
7-9% |
6% |
|
PicoPlex |
24% |
65-98% |
49% |
||
MALBAC |
21-28% |
18-47% |
|||
GenomePlex |
76% |
69% |
|||
Repli-G |
33-38% |
100% |
93-95% |
從歷年多篇論文比較可看出,相較於其他 WGA 方法,Ampli1™ WGA Kit 於 ADO 部份具有最佳表現。
可信賴的.再現性高.穩定的單顆細胞全基因放大套組
Ampli1™ WGA Kit 與其他放大方式相比,可平均放大各基因,同一個基因的對偶基因也平均擴增,降低 ADO 個 (allelic drop out) 比率。
單顆細胞同時擴增全基因組實驗流程
Ampli1™ WGA Kit 與其他放大方式相比,可平均放大各基因,同一個基因的對偶基因也平均擴增,降低 ADO 個 (allelic drop out) 比率。
後續應用
- 次世代&全基因組定序(Next Generation Sequencing)
- 單核苷酸多型性&突變偵測(SNP and Mutation Detection)
- 微衛星或其他 PCR 為主的基因型分析(STR &Sequencing)
- 比較基因組雜交(Comparative genomic hybridization)
- 拷貝數變異分析(Copy number variation analysis)
Ampli1™ WGA Kit 單細胞全基因組擴增 SCOMP (Single Cell Comparative Genomic Amplification) 的研究
- Mangano et al, Blood Cancer Journal 2019, “Precise detection of genomic imbalances at single-cell resolution reveals intra-patient heterogeneity in Hodgkin’s lymphoma“
- Pailler et al, Clinical Cancer Research 2019, “Acquired Resistance Mutations to ALK-Inhibitors Identified by Single Circulating Tumor Cell Sequencing in ALK-Rearranged Non-Small-Cell Lung Cancer“
- Scharpenseel et al, Scientific Report 2019, “EGFR and HER3 expression in circulating tumor cells and tumor tissue from non-small cell lung cancer patients“
- Faugeroux et al, European Urology Oncology 2019, “An Accessible and Unique Insight into Metastasis Mutational Content Through Whole-exome Sequencing of Circulating Tumor Cells in Metastatic Prostate Cancer“
- Rihawi et al, Translational Oncology 2019, “MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report“
- Weidele et al, International Journal of Cancer 2018, “Microfluidic enrichment, isolation and characterization of disseminated melanoma cells from lymph node samples“
- Ferrarini A et al, PLOS ONE 2018, “A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products”
- Werner-Klein et al, Nature Communications 2018, “Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma“
- Deleye et al , Scientific Reports 2017, “Performance of four modern whole genome amplification methods for copy number variant detection in single cells”
- Deleye et al, Scientific Reports 2018, “Short Tandem Repeat analysis after Whole Genome Amplification of single B-lymphoblastoid cells“
- Paoletti et al, Cancer Research 2017, “Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms“
- Pleatsen at al, Scientific Reports 2017, “STR profiling and Copy Number Variation analysis on single, preserved cells using current Whole Genome Amplification methods“
- Hoffmann et al, International Journal of Cancer 2017, “Diagnostic pathology of early systemic cancer: ERBB2 gene amplification in single disseminated cancer cells determines patient survival in operable esophageal cancer”
- Mesquita et al, Molecular Oncology 2017, “Molecular analysis of single circulating tumour cells following long-term storage of clinical samples”
- Mohme et al, Scientific Reports 2017, “Circulating Tumour Cell Release after Cement Augmentation of Vertebral Metastases”
- Kondo et al, BMC 2017, “KRAS mutation analysis of single circulating tumor cells from patients with metastatic colorectal cancer”
- Palmirotta et al, Cancer Genomics and Proteomics 2017, “Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA)”
- Bingham C et al, Breast Cancer Res Treat 2017, “Mutational studies on single circulating tumor clles isolated form the blood of inflammatory breast cancer patients”
- Borgstrom E et al, PLOS One 2017, “Comparison of whole genome amplification techniques for human single cell exome sequencing”
- Chen S et al, Nature Scientific Reports 2017, “Catch and Release: rare cell analysis from a functionalised medical wire”
- Hosseini et al, Nature 2016, “Early dissemination seeds metastasis in breast cancer”
- Breman et al, Prenatal Diagnosis 2016, “Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing”
- De Laere B et al, JTS 2016, “Patients with metastatic hormone receptor-positive breast cancer express PIK3CA oncogene mutational heterogeneity in circulating tumor cells”
- Carter L et al, Nature Medicine 2016, “Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer”
- Zhaomei Mu et al, IJMC 2016, “Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer“
- Shaw J et al, Clinical Cancer Research 2016, “Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high CTC counts”
- Babayan et al, Oncotarget 2016, “Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells”
- Normand E et al, Prenatal Diagnosis 2016, “Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells”
- Millner LM et al, Cancer Research Frontiers 2016, “Comprehensive isolation, identification, and nucleic acid analysis of single breast cancer cells: CTC-isoTECH”
- Neumann MHT et al, Biotechnology Progress 2016, “Isolation and characterization of circulating tumor cells using a novel workflow combining the CellSearch® system and the CellCelector™”
- De Luca F et al, Oncotarget 2016, “Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer”
- Bulfoni M et al, Breast Cancer Research 2016, “In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis”
- Rothwell G et al, Molecular Oncology 2015, “Genetic profiling of tumours using both circulating free DNA and circulating tumour cells isolated from the same preserved whole blood sample”
- Vishnoi M et al, Nature Scientific Reports 2015, “The isolation and characterization of CTC subsets related to breast cancer dormancy”
- Salvianti et al, Biomolecular Detection and Quantification 2015, “Feasibility of a workflow for the molecular characterization of singlecells by next generation sequencing”
- Hou Y ey al, Gigascience 2015, “Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing”
- Campton ED et al, BMC Cancer 2015, “High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining”
- Pestrin M et al, Molecular Oncology 2014, “Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients”
- Polzer B et al, EMBO Molecular Medicine 2014, “Molecular profiling of single circulating tumor cells with diagnostic intention”
- Neves R.P.L et al, Clinical Chemistry 2014, ”Genomic High-Resolution Profiling of Single vCKpos/CD45neg Flow-Sorting Purified Circulating Tumor Cells from Patients with Metastatic Breast Cancer”
- Fernandez S.V. et al, Breast Cancer Research 2014 , “TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients”
- Carpenter E, et al, Frontiers in Oncology 2014, “Dielectrophoretic capture and genetic analisys of single neuroblastoma tumor cells”
- Binder V. et al, Human Mutation 2014, “A new workflow for whole genome sequencing of single human cells”
- Hodgkinson C.L.et al, Nature Medicine 2014, “Tumorigenicity and genetic profiling of Circulating Tumor Cells in Small Cell Lung Cancer”
- Watanabe M et al, Journal of Translational Medicine 2014, “A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of circulating tumor cells”
- Czyz ZT, et al. PLOS One 2014, “Reliable single cell array CGH for clinical samples”
- Peeters DJE et al, British Journal of Cancer 2013, “Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting”
- Fabbri F, et al. Cancer Letters 2013, “Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs”
- Arneson N, et al. ISRN Oncology 2011 “Comparison of whole genome amplification methods for analysis of DNA extracted from microdissected early breast lesions in formalin-fixed paraffin-embedded tissue”
- Lee YS et al, Taiwanese Journal of Obstetrics & Gynecology 2008, “Comparison of whole genome amplification methods for further quantitative analysis with microarray-based comparative genome hybridization”
- Stoecklein NH, et al. Am J Pathol 2002 “SCOMP is superior to degenerated oligonucleotide primed-polymerase chain reaction for global amplification of minute amounts of DNA from microdissected archival tissue samples”
- Klein CA, et al. Proc Natl Acad Sci USA 1999 “Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells”